Here you can find the NEWSLETTER archive More ...
PMS MT-Messtechnik PPS Buchta

cleanroom online
Deutsch   English



Leistungsfähige Mikromodule und neuartige Gittertechnologie bei roten Diodenlasern

Puls-Lasersystem_PLS_1000
Puls-Lasersystem_PLS_1000
Rot-emittierender_Diodenlaser
Rot-emittierender_Diodenlaser
2-Wellenlaengen_Diodenlaser
2-Wellenlaengen_Diodenlaser

Das FBH präsentiert auf der Fachmesse Laser World of Photonics verschiedene miniaturisierte Laserstrahlquellen sowie Diodenlaser für den roten Spektralbereich, die eine neuartige Gittertechnologie zur Wellenlängenselektion nutzen.

Mit kompakten, hybrid-integrierten Diodenlasermodulen erschließt das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) vielfältige Anwendungen. Die flexiblen „Alleskönner“ lassen sich je nach Anforderung optimieren, von der Materialanalytik, Sensorik oder Displaytechnologie bis hin zur Materialbearbeitung.

Maßgeschneiderte, flexible Pikosekunden-Lichtimpulsquelle PLS 1000

Mit der PLS 1000 stellt das FBH eine sehr effiziente, gepulste Laserstrahlquelle vor, die auf selbst entwickelten optischen und elektronischen Halbleiter-komponenten basiert. Das Lasersystem liefert ultrakurze Lichtimpulse kleiner 10 Pikosekunden und bietet frei wählbare Folgefrequenzen vom Hertz- bis in den Megahertz-Bereich. Die Pulsspitzen­leistung liegt bei über 20 Watt. Dank dieser Eigenschaften eignet sich das kompakte Lasersystem ideal für Anwendungen in der Materialbearbeitung – vor allem in Verbindung mit Faserverstärkern –, für biomedizinische Untersuchungen auf Basis der Fluoreszenz­spektroskopie und für mobile LIDAR-Systeme für den Nahbereich. Das neuartige System ist mit Halbleiterkomponenten für die Wellenlänge 1064 Nanometer (nm) bestückt, lässt sich jedoch flexibel auf andere Wellenlängen übertragen. Es besteht aus einem modengekoppelten Laser mit einer Wiederholrate von etwa 4 Gigahertz, einem inno­vativen Pulspicker-Konzept sowie einem Verstärker. Eine elektronische Ansteuerung, die am FBH entwickelte Galliumnitrid-Transistoren nutzt, macht das System noch schneller. Dies sichert den stabilen und nutzerfreundlichen Betrieb. Die PLS 1000 kann sowohl manuell wie auch computergesteuert betrieben werden und selektiert flexibel vom Einzelpuls bis zu mehreren aufeinander folgenden Pulsen (burst mode).

Neuartige Gittertechnologie bei rot-emittierenden Diodenlasern

Spektral stabilisierte Diodenlaser im Wellenlängenbereich 630 nm bis 680 nm sind für die Materialanalytik und Längenmesstechnik von großem Interesse. Gaslaser wie Helium-Neon (HeNe)- und Krypton-Laser sind langjährig verfügbar und haben im roten Spektral­bereich bereits viele Messverfahren etabliert. Neu entwickelte Diodenlaser in diesem Spektralbereich können derartige Gaslaser ersetzen und ermöglichen ein kompakteres Messequipment. Die Strahlung dieser monolithischen Diodenlaser mit integriertem Gitter zur Wellenlängenstabilisierung lässt sich flexibel auf bestimmte Wellenlängen einstellen und kann einfach hinsichtlich Leistung und Wellenlänge moduliert werden. Darüber hinaus sind deutliche Verbesserungen bei etablierten Messverfahren zu erwarten, neuartige werden möglich. Der entscheidende technologische Schritt war es, Oberflächen-Bragg-Reflek­toren in rot-emittierende Diodenlaser zu integrieren. Das im FBH bereits für den nah-infraroten Spektralbereich etablierte Verfahren verwendet Oberflächengitter höherer Ordnung und basiert auf der Standard-i-Line-Stepperlithografie und herkömmlichem reaktivem Ionenätzen bei niedrigen Temperaturen. Damit verfügt das FBH über einen flexiblen Prozess für die Realisierung spektral stabilisierter rot-emittierender Diodenlaser, der sich auch für die Fertigung hoher Stückzahlen eignet.

Anwendungen dieser Gittertechnologie zielen unter anderem auf den Ersatz von HeNe-Lasern durch Diodenlaser in der Lasermetrologie. Es konnten Linienbreiten unter 1 MHz bei 14 mW optischer Ausgangsleistung demonstriert werden – dies entspricht einer Kohä­renzlänge von mehr als 100 Metern, die bereits für viele Anwendungen ausreichend ist.

Von der Gittertechnologie profitieren auch spektroskopische Applikationen in der Sen­sorik, an denen das FBH seit mehreren Jahren arbeitet. Mittels Raman-Spektroskopie lassen sich viele Substanzen präzise analysieren. Bestrahlt man eine Probe mit mono­chromatischem Laserlicht, so wird dieses je nach Substanz unterschiedlich zurück­gestreut. Diese spektral verschobenen Signaturen sind für jedes Molekül so einzigartig wie ein Fingerabdruck. Die Raman-Signale werden jedoch häufig von einem um mehrere Größenordnungen stärkeren Fluoreszenzsignal überdeckt. Hier liefert die Shifted Excitation Raman Difference Spectroscopy (SERDS) einen Ausweg. Regt man die Probe mit Licht auf zwei dicht beieinanderliegenden Wellenlängen an, so verändert sich die spektrale Lage der Raman-Linien – das Fluoreszenzsignal variiert dagegen kaum. Eine einfache Subtraktion beider Raman-Spektren trennt die Raman-Signale vom Störlicht. Diese Funktionalität kann mit der neuartigen Gittertechnologie nun in einem einzigen Laserchip implementiert werden. Die Wellenlängen liegen um 671 nm und sind nur 0,5 nm voneinander getrennt. Anwendungen von SERDS liegen dort, wo viel Störlicht, wie etwa Fluoreszenz, auftritt. Dies betrifft insbesondere biologische Proben wie Fleisch, Früchte, Blätter oder auch die medizinische Diagnostik an Haut.

Messestand auf der „Laser World of Photonics“

Diese und weitere Entwicklungen präsentiert das Ferdinand-Braun-Institut auf der Weltleitmesse Laser World of Photonics, Halle C1 Stand 312, vom 13. - 16. Mai 2013 in München sowie auf der angeschlossenen Fachkonferenz CLEO Europe.


Further information


Ferdinand-Braun-Institut gGmbH
12489 Berlin
Germany


Better informed: With YEARBOOK, NEWSLETTER, NEWSFLASH and EXPERT DIRECTORY

Stay up to date and subscribe to our monthly eMail-NEWSLETTER and our NEWSFLASH. Get additional information about what is happening in the world of cleanrooms with our printed YEARBOOK. And find out who the cleanroom EXPERTS are with our directory.

ClearClean Vaisala Systec & Solutions GmbH Becker