![Die Abbildung links zeigt die nanotomographischen Aufnahmen eines LRTMO-Teilchen vor dem ersten Ladezyklus (oben) und nach 10 Ladezyklen (unten). Rechts davon sind die entsprechenden Simulationen mit isolierten Poren (hellblau), deren Anzahl nach 10 Ladezyklen (rechts unten) steigt. © HZB / The left side of the figure shows nanotomography images of an LRTMO particle taken at the TXM of BESSY II before the first charging cycle (top) and after 10 charging cycles (bottom). In the simulation (right side), the isolated pores are highlighted in light blue. After 10 charging cycles, the number of pores and cracks has significantly increased. © HZB Die Abbildung links zeigt die nanotomographischen Aufnahmen eines LRTMO-Teilchen vor dem ersten Ladezyklus (oben) und nach 10 Ladezyklen (unten). Rechts davon sind die entsprechenden Simulationen mit isolierten Poren (hellblau), deren Anzahl nach 10 Ladezyklen (rechts unten) steigt. © HZB / The left side of the figure shows nanotomography images of an LRTMO particle taken at the TXM of BESSY II before the first charging cycle (top) and after 10 charging cycles (bottom). In the simulation (right side), the isolated pores are highlighted in light blue. After 10 charging cycles, the number of pores and cracks has significantly increased. © HZB](/uploads/images/_scale/bild2_169_19_626x352.jpg)
-
- Wissenschaft
Batterieforschung mit dem HZB-Röntgenmikroskop
Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemi…